

PV-Anlagen für Borsdorf

Bernd Genennig

genennig@fup-umwelt.de

0176-41593282

Energieautarke Gemeinde Borsdorf

Ziele

- > Energetisches Gesamtkonzept/Sektorenkopplung
- > Trendbasierte E-Erzeugung/-Verteilung/-Nutzung

"Dächerkampf"

Grundsätze

- Es ist fast unmöglich, eine PVA so schlecht zu planen/zu installieren, dass sie gar nicht funktioniert.
- Allerdings können nicht alle Eigentümer Mängel an ihren PVA erkennen, um die optimale Leistung daraus zu erzielen.

Kundenfragen

- ➤ Unterschied: Modul Kollektor?
- ➤ Wie viel Strom produziert PVA?
- ➤ Was, wenn Sonne nicht scheint?
- ➤ Wo wird erzeugter Strom verbraucht?
- ➤ Was bedeutet kWp?
- ➤ Welches Dach ist für PV geeignet?
- ➤ Wie sind Modulverschmutzungen einzustufen?
- ➤ Kann Hagelschlag Module zerstören?
- ➤ Sollten Module der Sonne nachgeführt werden?
- Gibt es unterschiedliche Modulfarben?
- Wird eine Baugenehmigung benötigt?
- ➤ Was kostet Installation?
- ➤ Muss PVA gewartet werden?
- ➤ Kann Blitzschlag PVA zerstören?
- ➤ Wie sind Garantiezeiten?
- ➤ Wie ist PVA-Brandrisiko?

Trend

Eigenverbrauch (EV) Anteil PV-Strom, der eigenverbrauch je höher, desto weniger PV-Strom g		Anteil PV-Strom, der eigenverbraucht wird: je höher, desto weniger PV-Strom geht ins Netz
Autarkiegrad (AG)		Anteil Strom, der durch Speicher gedeckt wird:
	<u> </u>	· · · · · · · · · · · · · · · · · · ·

PVA-Größe – Faustformel

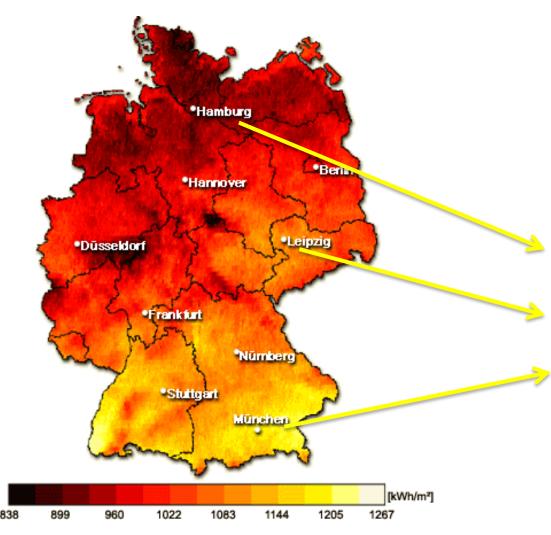
30% größer als Jahresenergieverbrauch

PV-Anlagengrößen

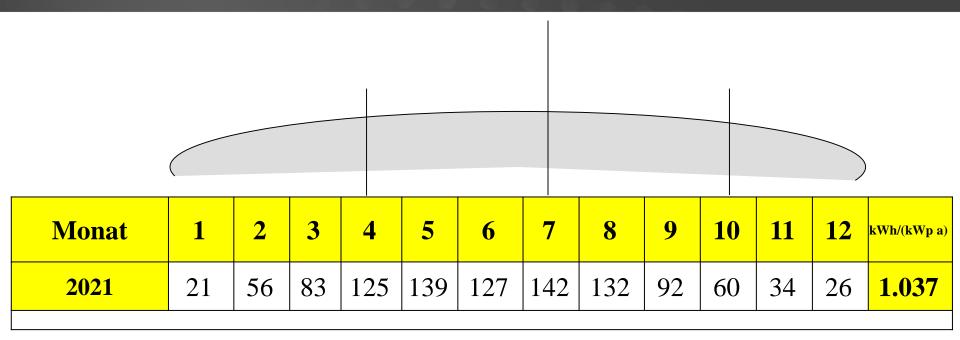
Stromverbrauch/a x 130% Regionalen Energieertrag

$$6.5 \text{ kWp} = 20 \text{ Module a } 330 \text{ Wp}$$

Persönlicher Energieertrag (I)


...abhängig von:

1. Geografischer Lage

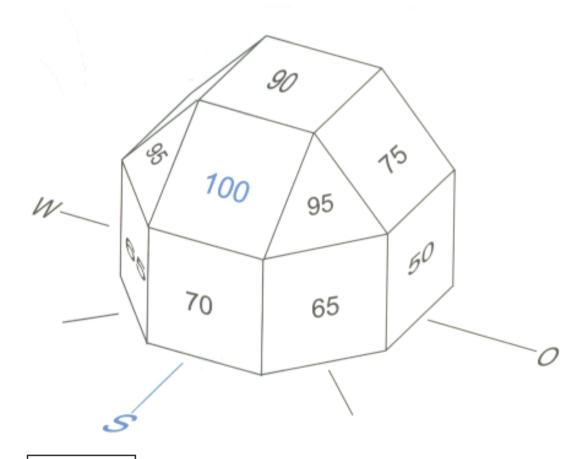

Globalstrahlung (kWh/(m² a)

Summe aus Direkt-/Diffusstrahlung

Augsburg	1.126
Berlin	975
Braunschweig	1.003
Bremen	949
Chemnitz	1.081
Dresden	1.029
Erfurt	994
Essen	951
Freiburg	1.121
Hamburg	945
IZ 21	972
Köln	114
Leipzig	1.000
Leipzig	1.000
Leipzig Mainz	1.000 1.005
Leipzig Mainz München	1.000 1.005 1.150
Leipzig Mainz München Nürnberg	1.000 1.005 1.150 1.043
Leipzig Mainz München Nürnberg Rostock	1.000 1.005 1.150 1.043 1.005

Solarerträge (kWh/(kWp a))

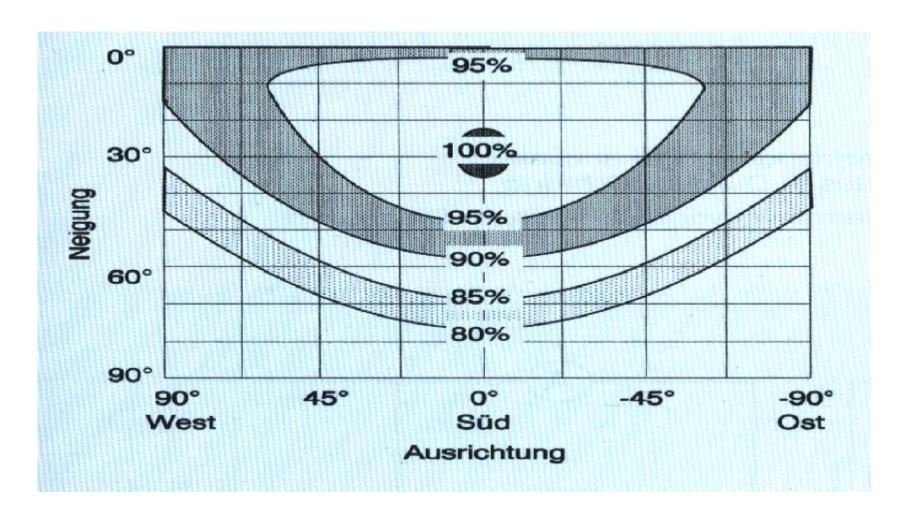
Quelle: SFV


Persönlicher Energieertrag (II)

...abhängig von:

- 1. Geografischer Lage
- 2. Ausrichtung / Neigung Module

Einstrahlung/Ertrag



Legende

- -Südausrichtung
- -Neigung 35°
- maximale Solarerträge in Mitteleuropa

Einstrahlung/Ertrag

Ausrichtung: SO – SW / Neigung: 15 - < 60°

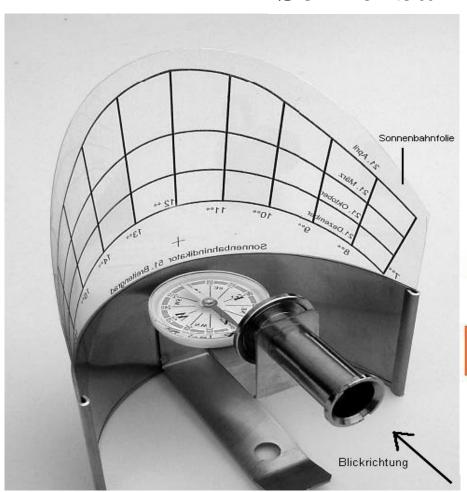
Persönlicher Energieertrag (III)

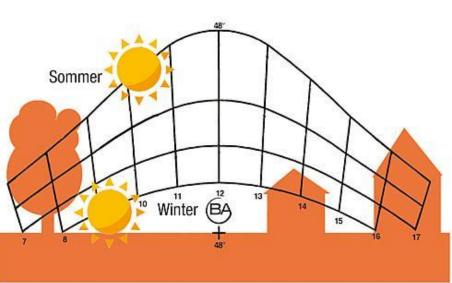
...abhängig von:

- 1. Geografischer Lage
- 2. Ausrichtung / Neigung Module
- 3. Verschattungen

Planungs-/Ausführungsmängel

Gaubenverschattung


Planungs-/Ausführungsmängel


Gebäudeverschattung

Planungs-/Ausführungsmängel

Sonnenbahnindikator

Speicher

90% aller PV-Anlagen in 2022 mit Speicher

Aufgabe

- > tags anfallende PV-Überschüsse zu speichern
- in Abend-/Nachtstunden zur Versorgung bereitzustellen

Speichergrößen

5.000 kWh/a: 365 Tage = 13,7 kWh Tagesverbrauch

13,7 kWh x 60% = 8 kWh Speichergröße

6,5 kWp PVA zu 8 kWh Speichergröße

PVA + Speicher = 16.500 €/Netto

Speicherauslegung

sinnvolle Obergrenze der nutzbaren Speicherkapazität									
≥	10	3,0 kWh	4,5 kWh	6,0 kWh	7,5 kWh	9,0 kWh	10,5 kWh	12,0 kWh	
PV-Generatorleistung in kW	9	3,0 kWh	4,5 kWh	6,0 kWh	7,5 kWh	9,0 kWh	10,5 kWh	12,0 kWh	
	8	3,0 kWh	4,5 kWh	6,0 kWh	7,5 kWh	9,0 kWh	10,5 kWh	12,0 kWh	9
	7	3,0 kWh	4,5 kWh	6,0 kWh	7,5 kWh	9,0 kWh	10,5 kWh	10,5 kWh	ektion.d
	6	3,0 kWh	4,5 kWh	6,0 kWh	7,5 kWh	9,0 kWh	9,0 kWh	9,0 kWh	stromspeicher-inspektion.de
	5	3,0 kWh	4,5 kWh	6,0 kWh	7,5 kWh	7,5 kWh	7,5 kWh	7,5 kWh	nspeich
	4	3,0 kWh	4,5 kWh	6,0 kWh	6,0 kWh	6,0 kWh	6,0 kWh	6,0 kWh	© stron
2000 3000 4000 5000 6000 7000 8000 Stromverbrauch in kWh/a						8000	5.12		

Quelle: HTW Berlin

Speicher

Eisen-Phosphat

Lithium-Ionen

Mangan-Kobalt

Speicher

- > Möglichst bei Raumtemperatur im Haus stationieren
- > WR oft schon im Speicher integriert

PVA-/Speicherkosten

PVA (kWp)	PVA- Kosten (T€/Netto)	PVA + Speicherkosten (T€/Netto)
4	7 - 8	12 – 15
5	8 - 8,5	13 – 16
6	8,5 – 9,5	13 – 18
7	9 – 11	14 – 21
8	10 – 12	15 – 22
9	11 – 14	18 – 25
10	12,5 – 15	20 - 27

EEG 2023 - Vergütungszahlungen (Ct/kWh)

bis kW	10	40	100	300	400	750
im Eigenverbrauch						
01.0731.12.22	8,6	7,5	6,2	6,2	6,2	_
01.0131.01.24	8,6	7,5	6,2	6,2	6,2	6,2
in Volleinspeisung						
01.0731.12.22	13,6	11,3	11,3	9,4	ı	1
01.0131.01.24	13,6	11,3	11,3	9,4	9,4	8,1

EEG 2021 – Steuerliche Behandlung

PVA bis 10 kWp sind steuerlich unbeachtliche Liebhaberein

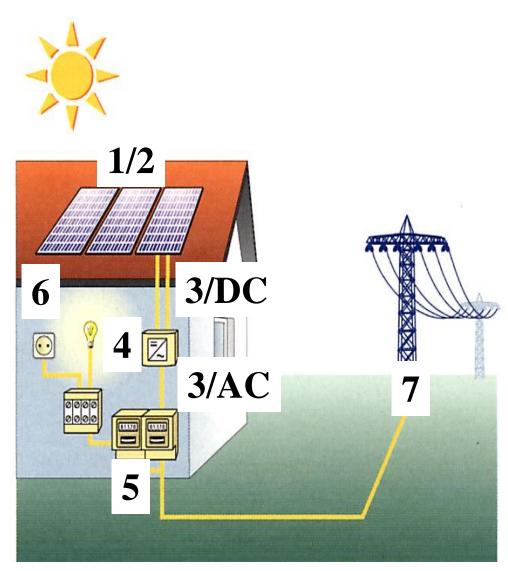
- > ...wenn keine Gewinnerzielungsabsichten vorliegen
- > ...wenn PV auf eigenem Dach genutzt wird

EEG 2021 – Marktstammdatenregister

- ➤ alle PVA sind innerhalb eines Monats nach Inbetriebnahme ins Register anzumelden/einzutragen
- ➤ Bei Verstößen drohen
 - Bußgelder
 - Verlust EEG-Vergütung

Baustellenmaße

nach Dachflächengröße				
Nominelle Dachfläche	100 m^2			
"Nutzbare" Dachfläche	50 m^2			
PVA-Größe	5 kWp $(1 \text{ kWp} = 10 \text{ m}^2)$			
Zu erwartender durchschnittlicher Energieertrag	5.000 kWh/a (1.000 kWh/(kWp a))			
Kaufpreis/kWp (Netto)	1.500 €			
Anlagenpreis (Netto)	7.500 €			


Baustellenmaße

nach Energieverbrauch				
E-Verbrauch (4-Pers-HH in D)	4.000 kWh/a			
E-Verbrauch (4-Pers-HH im Bsp.)	6.000 kWh/a			
Nominelle Dachfläche	100 m^2			
"Nutzbare" Dachfläche	50 m^2			
PVA-Größe	5 kWp $(1 \text{ kWp} = 10 \text{ m}^2)$			
Zu erwartender durchschnittlicher Energieertrag	5.000 kWh/a (1.000 kWh/(kWp a))			
Mehrkostenzukauf (Netto)	1.500 €			

Netzgekoppelte Systeme

- 1. Generator
- 2. Montagegestell
- 3. Verkabelung (DC/AC)
- 4. Wechselrichter
- 5. Bezugs-/Einspeißezähler
- 6. Verbraucher
- 7. Netz/Speicher

Genossenschaftsziele

- ➤ Einkauf von PV-Containerware
- > Aufbau von ca. 2 PV-Bautrupps
- ➤ Installation von PVA in Gemeinde/Parthenland

